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Abstract

Background: Modeling of pharmacokinetic parameters and pharmacodynamic actions requires
knowledge of the arterial blood concentration. In most cases, experimental measurements are only
available for a peripheral vein (usually antecubital) whose concentration may differ significantly from
both arterial and central vein concentration.

Methods: A physiologically based pharmacokinetic (PBPK) model for the tissues drained by the
antecubital vein (referred to as "arm") is developed. It is assumed that the "arm" is composed of
tissues with identical properties (partition coefficient, blood flow/gm) as the whole body tissues
plus a new "tissue" representing skin arteriovenous shunts. The antecubital vein concentration
depends on the following parameters: the fraction of "arm" blood flow contributed by muscle, skin,
adipose, connective tissue and arteriovenous shunts, and the flow per gram of the arteriovenous
shunt. The value of these parameters was investigated using simultaneous experimental
measurements of arterial and antecubital concentrations for eight solutes: ethanol, thiopental,
99T cm-diethylene triamine pentaacetate (DTPA), ketamine, D,O, acetone, methylene chloride and
toluene. A new procedure is described that can be used to determine the arterial concentration
for an arbitrary solute by deconvolution of the antecubital concentration. These procedures are
implemented in PKQuest, a general PBPK program that is freely distributed http:/
www.pkquest.com.

Results: One set of "standard arm" parameters provides an adequate description of the arterial/
antecubital vein concentration for ethanol, DTPA, thiopental and ketamine. A significantly different
set of "arm" parameters was required to describe the data for D,O, acetone, methylene chloride
and toluene — probably because the "arm" is in a different physiological state.

Conclusions: Using the set of "standard arm" parameters, the antecubital vein concentration can
be used to determine the whole body PBPK model parameters for an arbitrary solute without any
additional adjustable parameters. Also, the antecubital vein concentration can be used to estimate
the arterial concentration for an arbitrary input for solutes for which no arterial concentration data
is available.
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Background

One limitation in interpreting human pharmacokinetic
data in terms of physiological parameters is that many
pharmacokinetic calculations require knowledge of the
arterial blood concentration while in most human studies
the blood is sampled from a peripheral vein. The relation
between the peripheral vein and arterial blood concentra-
tion is a complicated function of the pharmacokinetic dis-
tribution of the drug in the organs drained by this vein. In
addition, the pharmacodynamic action of most drugs is
usually dependent on the arterial concentration and one
would like to be able to determine this arterial concentra-
tion given the experimentally measured peripheral vein
concentration. The problems associated with using
peripheral vein blood samples in pharmacokinetic calcu-
lations have been discussed in detail by Chiou [1,2].

An area where this sampling problem is particularly
important is in the development of physiologically based
pharmacokinetic (PBPK) models in which the drug kinet-
ics are described in terms of physiological organ parame-
ters (e.g. organ blood flows, organ partition coefficients,
etc.). The values of many of the PBPK parameters, such as
organ volumes and blood flows, are fixed and do not
depend on the specific solute that is investigated. How-
ever, in the PBPK modeling of a new solute there will be
some PBPK parameters that are unique to that solute (e.g.
liver metabolism, organ partition) and must be experi-
mentally determined. The usual approach in human
PBPK investigations is to treat these as adjustable parame-
ters whose values are determined by optimizing the fit to
the experimental data. The PBPK model describes the
human in terms of a set of organ and blood compart-
ments connected in series and parallel [3]. Two of the
compartments in the PBPK model are the arterial and the
central vein blood, and the standard approach is to adjust
the PBPK parameters to provide an optimal fit between
the experimental and model concentrations in one of
these blood compartments. Since the peripheral vein con-
centration may differ significantly from both the central
vein and arterial concentration, this procedure will be
problematical if only the peripheral vein blood concentra-
tion is experimentally measured.

A new approach to overcome this problem is described in
this paper. In the great majority of human pharmacoki-
netic investigations the peripheral site is the antecubital
fossa, which will be referred to as the "antecubital vein".
The basic idea is to add another organ, the "arm", repre-
senting the tissues drained by the antecubital vein. The
blood draining this "arm" becomes another PBPK model
compartment, and the PBPK parameters can now be
adjusted to optimize the fit to this concentration. The
most important aspect of this approach is that the PBPK
parameters describing the "arm" are chosen in such a way
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that, once they have been determined, they are applicable
to any arbitrary new solute that is investigated and no new
additional adjustable parameters are introduced into the
PBPK model. For example, suppose that one of the whole
human parameters that must be adjusted for a specific sol-
ute is the partition coefficient in muscle. Since the "arm"
PBPK model depends on exchange in the "arm" muscle
and it is assumed that the arm muscle has the same phar-
macokinetic properties (partition coefficient, volume of
distribution, flow/Kg etc.) as the whole body muscle,
adjusting the muscle partition coefficient for the whole
body simultaneously modifies the "arm" PBPK parame-
ter. This procedure has been implemented in PKQuest, a
general purpose PBPK software routine that has been
applied to a large number of solutes [3-7]. The implemen-
tation is completely transparent. The user simply chooses
"arm" for the sample site and adjusts the PBPK parameters
to fit the experimental antecubital vein concentration, just
as if the arterial or central vein concentration were
available.

Another new feature that has been incorporated into
PKQuest is a general procedure for using the antecubital
vein blood concentration to estimate the arterial concen-
tration. The unit bolus response function of the "arm" is
determined from the PBPK "arm" parameters. This
response function is then used to estimate the arterial
blood concentration by deconvolution of the antecubital
vein concentration. Once the PBPK parameters for the sol-
ute have been determined, the user simply inputs the
antecubital vein concentrations and PKQuest outputs the
corresponding arterial concentration.

The validity of this approach depends on being able to
find a set of PBPK "arm" parameters that accurately
describe the antecubital vein concentration. In this paper,
experimental measurements of simultaneous arterial and
antecubital vein concentrations for eight solutes are inves-
tigated: ethanol, thiopental, 99Tcm-diethylene triamine
pentaacetate (DTPA), ketamine, D,0O, acetone, methylene
chloride and toluene. This list covers the rather limited
experimental data that is available. It will be shown that a
single set of "standard arm" parameters provides an ade-
quate description of the more recent pharmacokinetic
studies of the four solutes ethanol, thiopental, DTPA and
ketamine. However, it is clear that these "standard arm"
parameters are not applicable to all human pharmacoki-
netic studies and they do not describe the results with the
other four solutes. This suggests that these "arm" parame-
ters have a strong dependence on the physiological state
of the arm and the general applicability of this approach
requires the development of a standard protocol for sam-
pling antecubital vein blood.
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Methods

Experimental data

All the experimental data was obtained from previous
publications. The experimental data points were obtained
by using UN-SCAN-IT (Silk Scientific Corporation) to
read the data from the published figures. If data was aver-
aged from N subjects, it was assumed that it represented
one "average" subject.

The ethanol data was from the paper by Jones et. al. [8].
Simultaneous blood samples were obtained from cathe-
ters in the radial artery and "large cubital" vein from 13
healthy men (mean age 31). An ethanol dose of 0.4 gm/
kg body weight was given as a constant, 30 minute, intra-
venous infusion. This data was part of large series in
which the A-V difference was determined when the hand
was heated or cooled. Only the control data without heat-
ing or cooling the hand was used to determine the arm
parameters.

Two sets of thiopental data were used. The first set was
from the paper by Barratt et. al. [9] that reported the aver-
age of simultaneous measurements of arterial and "fore-
arm vein" blood samples from 8 patients. Thiopental was
injected at a dose of 5 mg/kg body weight over 30 seconds.
Samples were taken for 12 minutes after the injection and
then clinical anesthesia was induced. The second data set
was from the paper by Stanski et. al. [10]. Simultaneous
blood samples were obtained from catheters in the radial
artery and "antecubital fossa (basilica vein)". The thio-
pental was given as a constant 6 minute infusion of 150
mg/min. The data are from one study on a healthy male
volunteer. The body weight of this subject was not
reported, so the dose/kg could not be determined. A body
weight of 65 kg was assumed. Since the main purpose of
this investigation is to model the factors determining the
arterial/antecubital concentration ratio, small errors in,
parameters such as body weight should not be significant
since they should cancel out when the ratio is taken.

The DTPA data was from the paper by Cousins et. al. [11].
The "antecubital venous" blood samples were obtained
30 s after the arterial samples. A mixture of DTPA and inu-
lin were given as an IV bolus injection (~15 s). Individual
data for arterial and AV differences of DTPA and inulin for
patients undergoing diagnostic coronary arteriography for
chest pain was displayed graphically. The data from sub-
ject #2 was used to determine the arm parameters. The
time of each data point was increased by 30 s to correct for
the time between the IV bolus injection and mixing in the
central venous compartment. Since the absolute dose was
not reported, the dose was regarded as an adjustable
parameter.
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The ketamine data was from the paper by Persson et. al.
[12]. Measurements for both the R and S-enantiomer were
reported. There were only small differences between the
two enantiomers. The R-enantiomer data was used for the
modeling except for the last time point (180 min), which
was the average of the R and S values because of the large
scatter in the values. Varying doses of ketamine were given
as a constant 30 minute intravenous infusion and the
reported arterial and venous concentration data was
scaled and plotted in units of concentration/mg dose. The
venous samples were taken from an "indwelling catheter
in the arm".

The D,0 data was from the paper of Schloerb et. al. [13]
and Edelman [14] which describe simultaneous arterial
and "antecubital vein" measurements of D,O kinetics.
Results were described graphically for 3 different subjects.
The data for subject JO [13] was used here.

The data for the volatile solutes acetone [15], methylene
chloride [16] and toluene [17] were from the set of papers
by Carlsson and colleagues. The solutes were input by
inhalation and simultaneous measurements of end alveo-
lar, arterial and venous blood concentrations were
reported. The venous blood for methylene chloride [16]
data was from "a medial cubital vein". Although the site
of the venous blood sample for the acetone and toluene
data was not reported, it was also assumed to be from an
antecubital vein. Data for rest and different work levels
were reported. Only the resting data was used. In the
methylene chloride study the resting inspired concentra-
tion was 870 mg/meter3 for the first 30 minutes, 1740 mg/
meter3 for the next 30 minutes followed by periods of
work on a bicycle ergometer. Although not stated, the sub-
jects were presumably on the bicycle ergometer during the
rest period. The resting inspired concentration was 1309
mg/meter3 in the acetone study and 300 mg/meter3 in the
toluene study. The position of the subjects during the rest-
ing phase of the acetone and toluene study was not stated.

PBPK model for the "whole body" and the "arm"

The PBPK model that is used to describe the whole body
and the "arm" is shown in figure 1. The PBPK values for
organ blood flow and weight are identical to those used
previously in PKQuest [18]. The tissue region of each
organ is assumed to be well stirred. The term "arm" refers
to the tissues that drain into the antecubital vein. It is
assumed that the "arm" consists of 5 different tissues (fig-
ure 1). Four of these tissues ("skin", "muscle”, "adipose”
and "other") are assumed to have PBPK parameters (e.g.
partition coefficients, blood flow/Kg, etc.) that are identi-
cal to the whole body tissues with the same name. (The
term "other" refers to subcutaneous and other forms of
connective tissue). Thus, the concentration in the blood
leaving these arm tissues will be identical to that leaving
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listed under "Standard flow fraction".
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the whole body tissues, and no new calculation is neces-
sary to determine this concentration. In addition, there is
a new "tissue" that is unique to the arm. This tissue,
referred to as "shunt", describes the pharmacokinetic
exchange that occurs in the arteriovenous anastomoses in
the skin of the hand.

The differential equation describing the free (unbound)
concentration (cg,,,) in the shunt tissue is described by
an equation with the same form as was used for the other
tissues in the model ([3], see eq. 4, Appendix I).

wfract dc i wfract
(1) Vshunt ﬁhum% = PBFsune fr £ fd(mrshunt (CA _Cshunl)
shunt
where Vg o Witacty o fWeun and Fgn and are the

weight (Kg), water fraction, fraction of solute that is free
and blood flow (liters/min), respectively of the shunt
organ; wfracty and fwy are the water fraction and fraction
free in the blood, and c, is the free arterial concentration
(it is assumed that there is no metabolism in this tissue).
fcleary,,,, is the fraction that equilibrates in one pass
through the capillary and is related to the capillary perme-
ability. The infinite permeability (flow limited) case cor-
responds to fclear = 1. It is assumed that the tissue
supplied by the shunt has the same pharmacokinetic
properties as skin so that wfractg, ., fcleary,,,, and fwg, .
are equal to the skin values. The ratio Vg, ,n/Fehunt (= Vshunt)
is introduced as a new parameter. With these assumptions
in eq. (1), the concentration in this new tissue is described
using only 1 additional parameter (V)

wfract g, dcg, wfractg

)] Vihunt fiw )szln sd;mt =PB fuw [fcleargin(ca = Cohunt)
skin B

The free concentration in the vein (cv;) leaving tissue i is

related to the tissue concentration ¢; by ([3], eq. I3):

(3) ¢i = cy — feleari(cy —c;)

If the tissue exchange is flow limited (fclear; = 1) then ¢¥;=
¢, the free tissue concentration.

The free concentration in the antecubital vein (c,,,) is
described by the sum of the output from the 5 "arm"
tissues:

~ _ v v v - v v
(4) Carm = fiskinCskin *+ fmuscieCmuscle + fotherCother + fadiposeCadipose + MshuntCshunt

where fr; is the fraction of the total antecubital vein blood
flow contributed by tissue i. The values of ¢”; for skin, mus-
cle, other, and adipose are identical to the whole body val-
ues, and the value of ¢y, is obtained from the solution
to the new differential equation 2.
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Determination of "whole body" and "arm" PBPK
parameters

A unique set of whole body PBPK parameters must be
determined for each of the 8 solutes investigated in this
paper. This parameter set was determined by optimizing
the fit between the experimental arterial data and the con-
centration in the PBPK "artery" compartment (see fig. 1).
The procedure used in PKQuest is to define a "standard
human" parameter set that completely describes the phar-
macokinetics of a solute such as D,0. Then, the user need
only specify the parameters that are unique for the specific
solute, such as liver metabolism and tissue/blood parti-
tion. The tissue/blood partition coefficient of the different
organs is the most problematical and uncertain parame-
ter. PKQuest has a variety of ways to represent this param-
eter, depending on the properties of the solute.

After the whole body PBPK parameters were determined,
the "arm" PBPK parameters were chosen by finding the
parameter set that provided the best fit to the experimen-
tal antecubital vein concentration. The "arm" is character-
ized by 5 new parameters: 4 values of fr;, the fraction of
blood flow to each "arm" organ, (the sum of fr must equal
1) and vy, (the weight/blood flow ratio for the AV
shunt). These 5 parameters depend only on the "physio-
logical state" of the "arm" and they should not be solute
dependent. If this approach is going to be applicable to
the study of drugs for which arterial data is not available,
then it is essential that this same "physiological state" is
present in the standard pharmacological investigation.
The data from the ethanol, thiopental, DTPA and keta-
mine studies were all acquired under similar conditions
and an attempt was made to find one set of 5 parameters
that would provide an adequate description of the experi-
mental arterial/antecubital vein concentration for these 5
solutes. Because of the limited number of these solutes, it
is not possible to systematically optimize the 5 parame-
ters. Values were chosen simply by a rough trial and error
adjustment. The most important parameter is the value of
fTuscle Decause it has the lowest blood flow/kg and pro-
duces the largest difference between the arterial and
venous concentration. Figure 7 provides an illustration of
the variation in the antecubital vein concentration associ-
ated with a range of values of fr, .. The standard value
for v, was | liter/kg/min. Once an optimal set of param-
eters was determined, it was included in the default data
set in the "standard human" package of PKQuest so that
the user does not need to enter them. This standard set for
fr; is listed in figure 1. The user can either choose this
standard set or, optionally, input arbitrary values for these
5 parameters. This "standard arm" set of PBPK values does
not fit the experimental arterial/antecubital vein values
for D,0 or for the volatile solutes. Presumably, this indi-
cates that the arm is in a different "physiological state" for
these solutes. This is discussed in more detail below.
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Antecubital Vein/Arterial Concentration Ratio as Function of
Muscle Arm Flow Fraction
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Figure 7

Comparison of the PBPK model antecubital vein/arterial concentration ratio with the experimental data for different values of
muscle flow fraction (fr,,..) for ethanol (top), thiopental (middle) and ketamine (bottom). The model ratio is shown for a
fractional muscle flow contribution of 0.05 (black, the "standard" value, used in figs. 2, 3, 4, 5), 0.15 (green) and 0.25 (blue).
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Maple Worksheet for Ethanol

ethanol:=proc ()

local i,datafile, tdata,xscale;
defaultpar () :
Wtot:= 70.0; #Arbitray since ethanol dose is per Kg
standardhuman2 (Wtot) ;

Fat := 0.2; #averge value for men

cunit:= "millimoles";

concunit[vein] :=2; #whole blood conc

Vm[liver]:= 2.45331; Km[liver]:= .09569;#Liver metabolism

Kfwat:=0.051; #0il/water partition coefficient

IV input of 608 millimoles/70 Kg over 30 minutes:

ninput:=1;

finput[1l] :=table([organ=vein, type=1,rate=608/30, tbeg=0,
tend=30,csteady=0,padjust=0]); #Constant 30 minute IV input

pdata:=2; #print two sets of data

Arterial blood concentration data:

datafll:= [10., 0.1, [10., 11.39350688), [20., 16.62727129],
130., 20.57272623), [35., 14.654545991, [40., 12.96363642),
145., 11.83636482), [50., 10.950648941, [55., 10.26623311),
160., 9.702597311, [75., 8.333765651, [90., 7.44805194), [120.,
5.39480445), [150., 3.777971, 1180., 2.254545371, [210.,
1.20779227111 ;

Antecubital vein blood concentration data:
>datal21:=110., 0.1, (10., 9.16222174), [20., 14.50685145),
130., 18.36462754), [35., 14.78814855), [40., 13.0201, 145.,
11.894813771, (50., 11.171481161, [55., 10.40796232), [60.,
9.92574058), [75., 8.479073191, 190., 7.43425942), [120.,
5.666110871, [(150., 4.09888913), [180., 2.69240797), (210.,
1.56722217411;
end proc:

Figure 2

Maple worksheet for ethanol. The calls to the PKQuest rou-
tines "defaultpar()" and "standardhuman2()" set most of the
PBPK model parameters. Only the PBPK parameters that are
unique for ethanol, along with the experimental data needs
to be input.

The PKQuest worksheet for each solute is listed in the 1
"PKQuest_worksheets.doc". These worksheets completely
characterize the PBPK model and list the experimental
arterial and venous concentration data that was used. The
reader can reproduce all the calculations and figures
described in this paper by running PKQuest with these
individual worksheets. The main features of the PBPK
parameters for the 8 solutes are summarized below.

Ethanol

The PKQuest PBPK model of ethanol has been described
in detail previously [6]. It is assumed that ethanol has the
same tissue distribution as water (D,0), except for fat for
which it has a partition coefficient of 0.051 [19]. Ethanol
metabolism is non-linear and the optimal values of Vmax
(2.45 millimoles/min/70 kg) and Km (0.096 millimole/
liter) were chosen using the non-linear Powell [20] mini-
mization routine that is built into PKQuest. This feature of
PKQuest allows the user to minimize the error between
the experimental data and the model output for an arbi-
trary number of parameters just by inputting a list of
parameters [3]. The Maple worksheet that completely
characterizes the PBPK parameters for ethanol is shown in
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fig. 2 in order to illustrate how the model is specified in
PKQuest. The calls in this worksheet to the routines
"defaultpar" and "standardhuman2" define the default
and standard human default PBPK parameters that char-
acterize the pharmacokinetics of the standard solute
(equivalent to D,0). The default "arm" parameters (ft;,
etc.) are also determined by standardhuman2. Only three
other parameters are required to completely specify the
ethanol pharmacokinetics: the Vm and Km for ethanol
liver metabolism and the fat/water partition coefficient of
ethanol (= 0.051, [19]).

Thiopental

Since thiopental had not been previously modeled using
PKQuest, a new set of PBPK parameters had to be devel-
oped to fit the arterial data of Stanski et. al. [10] and Bar-
ratt et. al. [9]. Thiopental is highly bound to blood and
tissue and the blood/tissue partition coefficients domi-
nate the kinetics. These partition coefficients where cho-
sen based primarily on the rat data of Ebling et. al. [21]
and the PBPK model is similar to the human model of
Wada et. al. [22]. The tissue/plasma partition coefficient
was 6 for adipose tissue, 3 for liver and kidney, 0.8 for
muscle and 1 for all other tissues. A fraction free in plasma
of 0.15 was used [23-25]. The only parameter that differed
in the model fits to the Stanski et. al. [10] and Barratt et.
al. [9] data was the value of the thiopental liver clearance,
which was adjusted to optimize the fit to the arterial data.

DTPA

DTPA is an extracellular solute that is limited to distribu-
tion in the interstitial tissue space. The PBPK parameters
used for DTPA were identical to those used in a previous
application of PKQuest to EDTA ([18]). The fraction of
water that is extracellular in these organs is: muscle (0.15),
skin (0.6), adipose (0.2) and other (0.8). (See [18] for a
detailed list and discussion of these parameters). The
renal clearance was adjusted to fit the arterial plasma data
of Cousins et. al. ([11], subject 2). This is the only adjust-
able PBPK parameter for DTPA. All the other parameters
correspond to the default standard human parameters for
an extracellular solute.

Ketamine

Because there are no PBPK models available for ketamine,
a new set of PBPK parameters had to be developed.
Although there have been four measurements of tissue/
plasma ketamine partition coefficients [26-29], these
studies are limited because they were not obtained at
steady state plasma values. The following values represent
a composite of the results in these four publications, with
most weight given to the intraperitoneal input data [29]
which most closely approximates the steady state: tissue/
plasma partition coefficient: 20 (kidney); 10 (adipose); 2
(muscle); and 4 (all other tissues). A plasma protein
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binding fraction of 0.6 [30] was used. Liver clearance was
adjusted to optimize the fit to the arterial data.

D,0
Since D,O is the "standard" solute in PKQuest, it is
described simple by the call to "standardhuman2".

Volatile solutes (toluene, methylene chloride and acetone)

The modeling of these solutes presents a special problem
because they were administered in the inspired air so that
the exact systemic input is not known. As reviewed by
Johanson [31], the kinetics of uptake and washout of vol-
atile solutes with high water/air partition coefficients have
a complicated dependence on the exchange that occurs in
the large airways of the respiratory tract ("washin-washout
effect"). This was discussed previously in the application
of PKQuest to methoxyflurane and toluene [5]. Because of
this complication, accurate PBPK modeling of the uptake
of these solutes requires detailed modeling of the large air-
ways [31,32], a feature that is not incorporated into the
current version of PKQuest. However, since uptake can be
estimated from the difference between the inspired and
the expired (end alveolar) concentration, the following
empirical approach could be used to determine the input
for these 3 volatile solutes. The water/air partition coeffi-
cient is small enough for methylene chloride (5.96, [33])
and toluene (1.75, [33]) that the rate of uptake can be
approximated by using an empirical blood/air partition
coefficient equal to the measured arterial blood/end alve-
olar partition during uptake. In contrast, acetone has such
a large water/air partition coefficient (395, [34]) that the
uptake is dominated by exchange with the large airways
and the end alveolar concentration is uncoupled from the
arterial concentration. During the uptake experiments
[15] the end alveolar concentration is nearly constant so
that it can be assumed that there is a constant uptake rate
equal to the inspired minus end alveolar gas
concentration.

As described previously in the application of PKQuest to
toluene and the anesthetic gases [5], a new PBPK
approach is used for modeling the blood/tissue partition
coefficient. It is assume that the blood/tissue partition is
completely determined by the lipid/water partition coeffi-
cient, along with a set of values for the fraction of lipid in
blood and the different tissues. With this assumption, the
PBPK model is completely specified by just the physical
values of the water/air and fat/water partition coefficient.
In addition, if the blood/air partition coefficient is
known, then this can be used to calculate the equivalent
lipid content of blood that would yield this value of the
blood/air partition. The values used for the 3 solutes are:
1) methylene chloride: Kbair = 11, Kfair = 130 and Kwair
= 6; 2) toluene: Kbair = 9, Kfair= 1470 and Kwair = 2.2; 3)
acetone: Kbair = 300, Kfair = 80 [34], Kwair = 344. Ace-
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tone is relatively insoluble in lipid, with a lipid/water par-
tition coefficient of 0.23 [34] and the blood/air partition
coefficient is dominated by the water/air partition. The
resultant blood/tissue partition coefficients are similar to
those that have been used in previous PBPK modeling of
the human pharmacokinetics of methylene chloride
[35,36], toluene [37,38] and acetone [32].

The major emphasis of this paper is an analysis of the fac-
tors that determine the arterial - antecubital vein concen-
tration difference. Small errors in the PBPK model should
not be important, as long as the model arterial concentra-
tion is a good approximation to the experimental arterial
data.

Determination of PBPK parameters using antecubital vein
experimental data

As described in the Introduction, the standard approach
for optimizing the parameters is to adjust them to provide
a good fit to experimental measurements of either the cen-
tral vein or arterial blood concentration. Since the antecu-
bital vein concentration differs significantly from both the
arterial and central vein concentrations, this presents a
serious limitation in the application of the PBPK
approach. As described above, if the "arm" parameters are
known then one can also relate the antecubital vein con-
centration to the whole body PBPK parameter set. In the
implementation in PKQuest, the use of the antecubital
vein to determine PBPK parameters is completely trans-
parent: The user simply chooses "arm" for the sample site
and adjusts the PBPK parameters to fit the experimental
antecubital vein concentration, just as if the arterial or
central vein concentrations were available.

Determination of arterial blood concentration by
deconvolution of the antecubital vein concentration

A new procedure has been developed and incorporated
into PKQuest to use the antecubital vein concentration to
estimate the corresponding arterial concentration. For the
special case where the "arm" tissue solute exchange is flow
limited and there is no metabolism in the well-stirred
"arm" tissues, the contribution of tissue i to the antecu-
bital vein concentration (c3,) after a bolus (delta function)
arterial input is described by a single exponential:

(5) c2(t) = A exp(-byt)

where the parameters A; and b; depend on the flow/vol-
ume ratio of the tissue, the partition coefficient of the sol-
ute in blood and tissue and fr;. This special case applies to
most solutes, including all the solutes studied in this
paper. The unit bolus response function describing the
antecubital vein concentration is then obtained by sum-
ming of these exponentials over all the "arm" tissues:
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(6) r(t) = z A; exp(=bit)

The "arm" concentration (c,,,(t)) for an arbitrary input is
then equal to the convolution of this response function
with the arterial concentration (c,,(t)):

(7) Carm (1) = j.r(t —T)car (T)dT
0

If the "arm" concentration is known, the arterial concen-
tration can then be determined by deconvolution of eq.

(7).

Four different deconvolution algorithms are imple-
mented in PKQuest and have been described previously
[7]. Although any of these algorithms could be used to
solve eq. (7) for c,,(t), the following default procedure
seems to work well in most cases. Deconvolution used the
cubic spline technique of Verotta [39,40]. The position of
the break points is chosen as quantiles of the experimental
data points and the user selects the number of break-
points. Once the PBPK parameters have been determined,
the arterial concentration is output by entering a one-line
command into PKQuest:

findartery: = table([armconc = vein_data, nbreakpoints =

81);

where vein_data is a table of the antecubital vein experi-
mental data points. This input produces two graphical
plots: 1) a plot of c,,(t) and 2) a plot of a comparison of
the experimental values of the antecubital vein concentra-
tion and the function c,,,,(t) obtained from convolution
of this ¢, (t) (eq. 7). This second curve provides a check
on the accuracy of the deconvolution procedure. Several
other optional parameters can be entered into the "findar-
tery" Maple table: 1) For the case where there is a
discontinuity in the input (e.g. fixed length constant
venous infusion) then it is useful to force the spline fit to
have a breakpoint at this discontinuity, which is indicated
by setting the parameter "fixtimebreak" to the time of the
discontinuity. 2) The user can also vary the spline
"smoothing parameter”, although the default option (= 1)
works well in most cases. Pitsiu et. al. [41] recommend
varying the number of breakpoints and using some statis-
tical procedure to determine the optimum number. How-
ever, by looking at the graphical outputs for different
values of nbreakpoints, the user can usually select the best
value.

http://www.biomedcentral.com/1472-6904/4/2

Results

Ethanol, thiopental, DTPA and ketamine

The arterial - antecubital vein concentration relationship
is characterized by five parameters: the fractional contri-
bution of blood flow (fr;) from "skin", "muscle”, "adi-
pose" and "other" to the antecubital vein blood and the
weight/blood flow ratio (vg,,,,) of the "shunt" tissue. (The
sum of the fractional flows must equal 1, which deter-
mines the value of fry, ). If these parameters are known,
then one can use the antecubital vein concentration to
estimate the arterial concentration. These parameters
depend only on the "physiological state" of the arm and
should be independent of the specific solute properties,
such as the blood/tissue partition coefficient. Although it
was initially hoped that there would be one "standard"
physiological state that was generally applicable, this was
overly optimistic. However, it was possible to find a
"standard arm" PBPK parameter set that provided an ade-
quate description of the simultaneous arterial and antecu-
bital vein pharmacokinetic measurements for the four
solutes described in this section.

The set of "standard arm" PBPK parameters that provides
the best fit to the data for these four solutes is: flow frac-
tion (fr;) = 0.05 (muscle), 0.25(skin), 0.075 (adipose), 0.1
(other), 0.525 (shunt); and v, = 1 ml/min/gm. A com-
parison between the experimental arterial (red) and
antecubital vein (blue) data and the PBPK model concen-
trations using this parameter set is shown in figs. 3, 4, 5, 6
for ethanol, thiopental, DTPA and ketamine. The best
indicator of the accuracy of the arm parameters is the plot
of the antecubital/arterial concentration ratio (bottom
row in figs. 3, 4, 5, 6) since small absolute errors in the
whole human PBPK parameters would be expected to can-
cel out in this ratio. For example, although the absolute
concentration is critically dependent on the values of the
liver and renal clearance, the relationship between the
arterial and antecubital vein concentration should not
depend on these parameters.

The parameter fr . (the fraction of antecubital vein
blood that drains muscle) has the strongest influence on
the antecubital vein concentration because muscle has the
lowest value of flow/kg. The "standard arm" data set that
was used in figs. 3, 4, 5, 6 has a very small value of fr_ .
(0.05) and a corresponding large value for fry,,,, (0.525).
The sensitivity of the results to small changes in fr, . is
shown in fig. 7, which plots the ratio of the antecubital/
arterial concentration for an fr,, 4. 0f 0.05 (black line, the
"standard" value), 0.15 (green) and 0.25 (blue) for etha-
nol, thiopental and ketamine. It can be seen that an
increase in fr_ . by just 10% (from 0.05 to 0.15) leads to
a significantly poorer fit to the antecubital vein blood
concentration.

Page 9 of 23

(page number not for citation purposes)



BMC Clinical Pharmacology 2004, 4 http://www.biomedcentral.com/1472-6904/4/2

Comparison of Model Arterial {red) and Antecubital (blue) with Experimental Data (squares)
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Figure 3

The top panel shows a comparison of the ethanol PBPK model arterial (red line) and antecubital vein (blue line) with the
experimental data (squares) of Jones et. al. [8]. The bottom panel compares the model antecubital vein/arterial concentration
ratio (black line) versus the experimental values (squares). Using a fractional contribution of muscle to antecubital vein blood of

0.05.
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Figure 4

Comparison of thiopental PBPK model with the experimental data of Stanski et. al. [10] (left column) and Barratt et. al. [9]
(right column). The top panels compare the model arterial (red) and antecubital vein (blue) concentration with the experimen-
tal data (squares). The bottom panels compare the model antecubital vein/arterial concentration ratio (black line) versus the
experimental values (squares). Using a fractional contribution of muscle to antecubital vein blood of 0.05.
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DTPA

Comparison of Model Arterial (red) and Antecubital (blue) with Experimental Data (squares)
500000

400000

3000001

cpmfliter

200000

100000

0 10 20 30 40 50 B0
minutes

Antecubitali/Arterial Concentration versus Time {min)

0,95 °
09

(.85
08

0.75
07

06510

Antecubital/Arterial

T T 1 1 1

10 0 30 40 50 B0
minutes

Figure 5
Comparison of DTPA PBPK model arterial (red line) and antecubital vein (blue line) concentrations with the experimental data
(squares) of Cousins et. al. [10] (top panel). The bottom panel compares the model antecubital vein/arterial concentration

ratio (black line) versus the experimental values (squares). Using a fractional contribution of muscle to antecubital vein blood of
0.05.
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Ketamine
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Figure 6

Comparison of ketamine PBPK model arterial (red) and antecubital vein (blue) concentrations with the experimental data
(squares) of Persson et. al. [12] (top panel). The bottom panel compares the model antecubital vein/arterial concentration ratio
(black line) versus the experimental values (squares). Using a fractional contribution of muscle to antecubital vein blood of 0.05.
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Arterial (black) and Antecubital for Muscle Arm Flow Fraction
of 0.05 (red) and 0.4 (blue)
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Figure 8

Comparison of D,O PBPK model arterial (black line) and
antecubital vein concentrations with the experimental arte-
rial (black squares) and antecubital (red squares) data of
Schloerb et. al. [13]. The red line shows the predicted model
antecubital vein concentration using the "standard" arm
parameters used in figs. 2, 3, 4, 5 (muscle arm flow fraction =
0.05). The blue line shows the model antecubital vein con-
centration with the fractional muscle arm blood flow contri-
bution increased to 0.4.

D,0 and the volatile solutes (acetone, methylene chloride

and toluene)

A much larger value of fr .. is required to describe the
antecubital vein concentration for these four solutes. Fig-
ure 8 shows a comparison of the model and experimental
antecubital vein blood concentration for the D,O data of
Schloerb et. al. [13]. It can be seen that using the "stand-
ard" value of fr,; 4. 0f 0.05 (red line) provides a very poor
fit to the experimental antecubital vein data (red squares).
In order to fit the antecubital vein data, a fr,,,. . of about
0.4 is required (blue line). (As the value of fr is

muscle
increased, the wvalue of fry,, is correspondingly
decreased.)

A value of fr ;4. of 0.4 to 0.5 is also required to describe
to describe the antecubital vein concentration data for the
volatile solutes. Figures 9, 10, 11 shows the results of the
PBPK model analysis using a value of fr of 0.5 (and

muscle
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frhune ©f 0.075) for acetone, methylene chloride and tolu-
ene. This large muscle (and negligible shunt) contribution
to antecubital vein blood is consistent with the previous
PBPK modeling of Johanson and Naslund [36] of the arte-
rial and antecubital vein concentrations for volatile sol-
utes. They were able to describe the experimental data
assuming that the antecubital vein blood was supplied
entirely by muscle and skin. The fit at long times in fig. 9
is poor for the acetone data. Wigaeus et. al. [15] com-
mented in the original paper that there was something
anomalous about the acetone data at long times because
the venous concentration remained lower than the arterial
concentration for the entire 2 hour washout period. This
is very difficult to explain and would be consistent with a
direct loss of acetone from the tissues of the hand and
arm.

Determination of arterial concentration by deconvolution
of the antecubital vein concentration

This section describes the results of two tests of validity of
the new deconvolution procedure of using the antecubital
vein concentration to determine the corresponding arte-
rial concentration. Figure 12 describes the application of
the deconvolution method to error free model data
generated using PKQuest. The top panel shows the PBPK
model] arterial and antecubital vein ("arm") concentration
generated using the toluene PBPK parameter set for a 120
minute constant inhalation (fr,, 4. = 0.5). The deconvo-
lution procedure was then applied to the antecubital vein
model data sampled at the positions indicated by the blue
squares in the top panel. The bottom panel compares the
arterial concentration determined by this deconvolution
approach (black) with the true model arterial concentra-
tion (red). This deconvolution used the default
smoothing parameter and a set of breakpoints at 0, 2.84,
27,59,92,118, 120, 124, 162, and 240 minutes. Not sur-
prisingly, given the error free data and the correct set of
whole body and "arm" PBPK parameters, the agreement is
nearly perfect. The agreement can be further improved if a
smaller smoothing parameter is used.

Figure 13 illustrates the application of this technique to
the experimental thiopental data of Barratt et. al. [9] and
should be representative of the use of PKQuest to estimate
the arterial concentration given experimental values for
the antecubital vein concentration. It is assumed that the
"arm" is described by the "standard arm" PBPK set (flow
fraction (fr;) = 0.05 (muscle), 0.25(skin), 0.075 (adipose),
0.1 (other), 0.525 (shunt); and vy, = 1 ml/min/gm).
The first step is to determine the whole body PBPK param-
eters using just the antecubital vein concentration by
optimizing the fit between the experimental and model
antecubital vein concentration (top panel, fig. 13). The
next step is to use these whole body PBPK parameters and
the "standard arm" parameters to estimate the arterial
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Acetone
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Figure 9

Comparison of acetone PBPK model arterial (red line) and antecubital vein (blue line) concentrations with the experimental
data (squares) of Wigaeus et. al. [15] (top panel). The bottom panel compares the model antecubital vein/arterial concentra-
tion ratio (red line) versus the experimental values (squares). Using a fractional contribution of muscle to antecubital vein

blood of 0.5.

Page 15 of 23

(page number not for citation purposes)



BMC Clinical Pharmacology 2004, 4 http://www.biomedcentral.com/1472-6904/4/2

Methylene Chloride
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Figure 10

Comparison of methylene chloride PBPK model arterial (red line) and antecubital vein (blue line) concentrations with the
experimental data (squares) of Astrand et. al. [16] (top panel). The bottom panel compares the model antecubital vein/arterial
concentration ratio (black line) versus the experimental values (squares). Using a fractional contribution of muscle to antecu-

bital vein blood of 0.5.
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Comparison of toluene PBPK model arterial (red line) and antecubital vein (blue line) concentrations with the experimental
data (squares) of Carlsson et. al. [17] (top panel). The bottom panel compares the model antecubital vein/arterial concentra-
tion ratio (black line) versus the experimental values (squares). Using a fractional contribution of muscle to antecubital vein

blood of 0.5.
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Toluene

PBPK Model Arterial (red) and Antecubital (blue)
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Figure 12
Determination of arterial concentration by deconvolution of the model antecubital vein concentration data. The top panel

shows the model arterial (red) and antecubital (blue) concentration determined using the toluene PBPK model and a value of
fruscte = 0.5. The bottom panel compares the arterial concentration (black line, bottom panel) determined by deconvolution of
the antecubital vein discrete data (blue squares, top panel) with the true model arterial concentration (red line, bottom panel).
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concentration by deconvolution of the experimental
antecubital vein data (middle panel, fig. 13). As a check
on the accuracy of the deconvolution, the lower panel
shows the antecubital vein concentration (red line)
obtained by convolution (eq. (7)) of the response func-
tion (r(t)) and this arterial concentration (c,,, black line,
middle panel). The default smoothing parameter was
used with a set of 6 breakpoints at 0, 0.5.1.2,2.4, 3.7, 6.7
and 12.5 minutes. These figures are taken directly from
the PKQuest run and represent the standard PKQuest
output.

Discussion

PBPK "arm" parameters

The values of the PBPK "arm" parameters that characterize
the blood flow to the organs drained by the antecubital
vein were determined by modeling the experimental
simultaneous measurements of the arterial and
antecubital vein concentration. In order to compare the
model predictions to the experimental data, the following
three conditions are required: 1) Simultaneous measure-
ments of human arterial and antecubital vein concentra-
tion at relatively early times (<10 minutes) before
equilibration occurs; 2) An intravenous input so that the
time course of the systemic input is known; and 3) No
metabolism in the "arm" tissues, which implies no blood
or peripheral (non-liver) metabolism. (Condition #2 was
relaxed slightly for the volatile solutes for which uptake
could be estimated from the inhaled minus end alveolar
concentration difference.) Unfortunately, only a limited
number of pharmacokinetic studies have been published
that meet these three criteria. Chiou [1] reviewed the liter-
ature up to 1989 and I have reviewed the more recent lit-
erature. The eight solutes investigated in this paper are a
nearly complete list. (Although nicotine experiments [42]
satisfied these conditions, it was not possible to develop a
satisfactory PBPK model that fit the arterial data points
using the published rat tissue/plasma partition coeffi-
cients [43], possibly because of the changes in resting skin
and muscle arm blood flow produced by nicotine
[44,45]).

The arterial — antecubital vein concentration difference for
the four solutes ethanol, thiopental, DTPA and ketamine
are adequately fit (figs. 3, 4, 5, 6) by a set of arm
parameters in which the skeletal muscle contributes only
about 5% to the total antecubital vein ("arm") flow (fr,, .
de = 0.05) and there is a corresponding large contribution
by the AV shunt flow (52.5 % of total "arm" flow). As
shown in fig. 7, these fits are quite sensitive to the value of
the muscle contribution, and increasing fr,, e t0 just
15% (and decreasing the AV shunt to 42.5%) produces a
significantly poorer fit.
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These four solutes have a wide range of pharmacokinetic
properties that should be representative of most
pharmacologic agents. Ethanol distributes freely in the
body water space while the distribution of DTPA is
limited to the extracellular space. Thiopental and keta-
mine have large fat/blood and tissue/blood partition coef-
ficients. Although the agreement between the
experimental data and model results shown in figs. 3, 4, 5,
6 is clearly not perfect, the model values of the antecubital
vein/arterial concentration ratio provide a good first
approximation to the experimental values.

In sharp contrast, fitting the data for D,O (fig. 8) and the
volatile solutes (figs. 9, 10, 11) requires a much larger
muscle contribution, in the range of 40 to 50% (and a cor-
responding AV shunt contribution of 7.5 to 17.5 %). This
difference cannot be explained by differences in the prop-
erties of the solutes. Ethanol and D,O have nearly
identical pharmacokinetics. In addition, acetone,
although volatile, has a relatively small lipid/water parti-
tion (0.23) and its pharmacokinetics should also be simi-
lar to ethanol. The most obvious explanation of this
surprisingly large variation in fr . is that the "arm" is in
a different "physiological states" for the two data sets. In
particular, in the methylene chloride study the collection
of the resting data (used in fig. 10) was immediately
followed by data collected while exercising on a bicycle
ergometer, suggesting that the subjects were also on the
ergometer during the resting period. One would expect
this experimental condition would lead to increased arm
muscle blood flow. The other volatile solute data was
collected by the same set of investigators under similar
conditions. The only obvious methodological difference
in the D, 0O studies was that the venous blood samples "...
were collected by repeat puncture and were drawn from
the antecubital vein" while in the other studies, the blood
was drawn from an indwelling catheter. It is possible that
this method sampled superficial vein blood that had a
smaller contribution from hand blood flow. Another pos-
sibility is that the repeat punctures were associated with
arm movements and increased muscle blood flow.

Whatever the explanation for this variation, it is clear that
there can be large variations in the value of the arm
parameters and that this must be recognized if one wishes
to predict the arterial concentration using antecubital vein
blood samples. The fact that the four, more recent, phar-
macokinetic investigations of ethanol, thiopental, DTPA
and ketamine can be described by a single set of "arm"
parameters suggest that this set might be regarded as a
"standard" set that can be applied to other
pharmacokinetic investigations in the literature. How-
ever, support for this conclusion will require additional
pharmacokinetic studies, specifically designed to look at
the factors that influence the arterial - antecubital vein
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Thiopental

Comparison of Model Arterial (red)
and Antecubital (blue) versus
Experimental Data (squares)

o
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Comparison of Arterial determined by
Antecubital Deconvolution (line) versus
Experimental Arterial (squares).
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Comparison of Antecubital (line)
determined by Convolution of Arterial
versus Experimental Antecubital
(squares)

minutes

Determination of arterial concentration by deconvolution of the experimental antecubital vein concentration data for thiopen-
tal. The top panel shows the experimental arterial and antecubital vein data (squares) of Barrett et. al. [9] and the model pre-

dictions using the whole body and "arm" PBPK parameters described in fig. 4 (using fr,

= 0.05). The middle panel compares

muscle

the arterial concentration (black line) determined by deconvolution of the antecubital vein experimental data (blue squares, top
panel) versus the experimental arterial data (black squares). The bottom panel compares the antecubital concentration (red
line) determined by convolution of the arterial concentration (black line, middle panel) versus the experimental antecubital

data (black squares).
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concentration difference. These results also suggest that
efforts should be directed at establishing a standard set of
conditions for collecting antecubital vein blood (ambient
air temperature, arm position, etc.).

Arteriovenous anastomotic "arm" blood flow

The main feature of the "standard arm" PBPK parameter
set used for ethanol, thiopental, DTPA and ketamine is
that 55% of the antecubital vein blood comes from the
very high flow AV shunt (1 ml/min/gm) and another 20%
from the relatively high flow skin (0.1 ml/min/gm) with
only about 5% being contributed by the skeletal muscle.
There is direct experimental evidence that the skin and AV
anastomoses of the hand can contribute a large fraction to
the antecubital vein blood flow. Plethysmographic meas-
urements of forearm blood flow with and without wrist
cuff inflation indicate that about 50% of the blood flow
entering the forearm goes to the hand [46,47], and,
presumably, most of the hand blood flow is to skin and
arteriovenous anastomoses.

Another indication of the importance of the AV anasto-
motic blood flow is provided by ultrasound measure-
ments of flow velocities in the arteries of the arm and leg
[48]. These studies indicate that there are large,
spontaneous variations in the blood flow in these arteries
with time constants of about 20 seconds. The fluctuations
in the arms and legs are synchronized, indicating a cen-
trally mediated sympathetic temperature regulation
mechanism. The fluctuations are also correlated with
changes in heart rate and cardiac output. It is estimated
that 5 to 10% of the cardiac output of resting subjects is
through these arteriovenous anastomoses [48]. The very
large amplitude of the fluctuations in ulnar artery velocity
suggests that 50% or more of ulnar artery blood flow is
associated with arteriovenous anastomoses. This fluctuat-
ing AV blood flow pattern is found only in the skin of the
hands, feet and face [49,50].

Given that hand blood flow (which is primarily AV anas-
tomotic flow) represents about 50% of total forearm flow,
and that the antecubital vein drains primarily the hand
and the superficial layers of the forearm [51-53], this 55%
AV shunt contribution is not surprising. This large contri-
bution of high flow AV shunt and skin blood to the
antecubital vein has not been generally recognized in the
pharmacokinetic literature. For example, in the
theoretical modeling of the antecubital vein blood by Tuk
et. al. [54], it was assumed that the tissue drained by the
antecubital vein was mostly muscle with a blood flow of
0.045 ml/min/gm.

The other PBPK parameter that characterizes this AV
blood flow is the local flow/kg through the "shunt" tissue
(Vehunt)- Midttun et. al. [55] measured a local AV flow rate

http://www.biomedcentral.com/1472-6904/4/2

of 1 to 1.4 ml/min/gm using a heat washout method. This
is in the same range as the value of 1 ml/min/gm that was
used to model the data in figs. 3, 4, 5, 6, 7, 8, 9, 10, 11.
Another major assumption in the PBPK "arm" model is
that the "arm" pharmacokinetics can be modeled in terms
of a number of tissues (skin, muscle, adipose, etc.) whose
pharmacokinetics are identical to the average PBPK values
for the whole human. Elia et. al. [56]measured human
forearm muscle blood flow using 133Xe washout and
found values of 1.6 to 1.8 ml/min/100 gm, similar to the
PKQuest PBPK value of 2.2. Weber et. al. [57] obtained a
higher value for forearm muscle blood flow (4 ml/min/
100 gm) using two site plethysmography. Blaak et. al. esti-
mated a forearm adipose blood flow of about 2 ml/min/
100 gm using 133Xe washout, about 60% of the value of
the whole body PBPK value of 3.5. Given the limitations
in these methods and the range of results obtained, the
validity of the model assumption seems reasonable, at
least as a first approximation.

Use of antecubital vein blood samples to estimate the
arterial concentration

Since the pharmacodynamic action of most drugs is
dependent on the arterial concentration, it is important to
be able to estimate the arterial concentration given
experimental —measurements of the antecubital
concentration. Pitsiu et. al. [41] have recently presented a
general approach for modeling the relationship between
the arterial and peripheral vein concentration for linear
systems. Using simultaneous measurements of arterial
and antecubital vein concentrations, they develop a multi-
exponential system response function (transfer function)
that relates the experimental peripheral vein data to the
arterial data. Using deconvolution (see eq. (7)), this
response function can then be used to predict the arterial
concentration given the peripheral vein concentration for
arbitrary input regimens of this solute. The disadvantage
of this approach is that it requires simultaneous experi-
mental arterial and peripheral vein data for each solute
that is investigated.

The PBPK method described here provides an alternative
approach to predicting the arterial concentration for an
arbitrary input. This procedure is illustrated in fig. 13 for
the experimental thiopental data of Barratt et. al. [9] The
first step is to determine the whole body PBPK parameters
using the antecubital vein concentration data for a known
systemic (e.g. intravenous) input. In the top panel of fig.
13, the rate of thiopental liver metabolism was adjusted in
order to fit the model antecubital vein concentration
(blue line) to the experimental data. In the implementa-
tion in PKQuest, the user simply inputs "arm" in order to
indicate that the experimental data corresponds to antecu-
bital vein blood samples. Once these whole body PBPK
parameters have been determine, the system response

Page 21 of 23

(page number not for citation purposes)



BMC Clinical Pharmacology 2004, 4

function can then be directly determined from the PBPK
model (see Methods). The arterial concentration can then
be determined by deconvolution of this response function
with the antecubital vein concentration data (see eq. (7)).
The results of this deconvolution calculation are illus-
trated in the second and third panels of fig. 13.

This procedure is critically dependent on knowledge of
the "standard arm" parameters that describe the fraction
of the antecubital vein blood that is supplied by the differ-
ent organs (i.e. skin, muscle, AVshunt, etc.). Although this
new PBPK approach to estimating the arterial concentra-
tion is less accurate than the approach of Pitsiu et. al. [41],
it has the important advantage that once the "standard
arm" PBPK parameters have been determined they should
be applicable to all other solutes. This means that the
analysis can be applied to solute data in the literature for
which no arterial measurements are available.

The complete PKQuest program is freely distributed at
http://www.pkquest.com.
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